Supplementary Info for: # Common variants at five new loci associated with earlyonset inflammatory bowel disease Marcin Imielinski^{1,28}, Robert N. Baldassano^{3,6,28}, Anne Griffiths^{7,28}, Richard K Russell^{8,28}, Vito Annese^{14,28}, Marla Dubinsky^{12,28}, Subra Kugathasan^{22,28}, Jonathan P. Bradfield¹, Thomas D. Walters⁷, Patrick Sleiman¹, Cecilia E. Kim¹, Aleixo Muise⁷, Kai Wang¹, Joseph P. Glessner¹, Shehzad Saeed²¹, Haitao Zhang¹, Edward C. Frackelton¹, Cuiping Hou¹, James H. Flory¹, George Otieno¹, Rosetta Chiavacci¹, Robert Grundmeier^{4,6}, Massimo Castro¹⁶, Anna Latiano¹⁶, Bruno Dallapiccola¹⁷, Joanne Stempak¹⁸, Debra J. Abrams³, Kent Taylor¹², Dermot McGovern¹², Western Regional Research Alliance for Pediatric IBD, International IBD Genetics Consortium, Melvin B. Heyman¹⁹, George D. Ferry²⁰, Barbara Kirschner¹¹, Jessica Lee²⁵, Jonah Essers²⁵, Richard Grand²⁵, Michael Stephens²³, Arie Levine^{14,24}, David Piccoli^{3,6}, Johan Van Limbergen⁹, Salvatore Cucchiara¹⁵, Dimitri S. Monos⁵, Stephen L. Guthery¹³, Lee Denson²⁶, David C Wilson¹⁰, Struan F.A. Grant^{1,2,6}, Mark Daly²⁷, Mark S. Silverberg^{18,29}, Jack Satsangi^{9,29}, Hakon Hakonarson^{1,2,6,29} ¹Center for Applied Genomics, ²Division of Human Genetics, ³Division of Gastroenterology, ⁴Center for Biomedical Informatics, and ⁵Department of Pathology The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, 19104, USA, ⁶Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA, ⁷The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. ⁸Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Glasgow, G3 8SJ, UK. ⁹Gastrointestinal Unit, Division of Medical Sciences, School of Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. ¹⁰Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh and Child Life and Health, University of Edinburgh, EH9 1UW, UK. ¹¹University of Chicago Comer Children's Hospital, Chicago, Illinois 60637, USA. ¹²Departments of Pediatrics and Common Disease Genetics, Cedars Sinai Medical Center, Los Angeles CA. 90048, USA. ¹³Department of Pediatrics, University of Utah School of Medicine and Primary Children's Medical Center, Salt Lake City, Utah. 84132, USA. ¹⁴Units of Gastroenterology and Endoscopy, IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy. ¹⁵Pediatric Gastroenterology & Liver Unit, La Sapienza University of Rome, IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy. ¹⁶Mendel Institute, La Sapienza University of Rome, IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy. ¹⁸Mendel Institute, La Sapienza University of Rome, IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy. ¹⁸Mendel Institute, La Sapienza University of Rome, IRCCS-CSS Hospital, S. Giovanni Rotondo, Italy. ¹⁸Mount Sinai Hospital IBD Centre, University of California, San Francisco, San Francisco, 94143, CA, USA. ²⁰Department of Pediatrics, University of California, San Francisco, San Francisco, 94143, CA, USA. ²⁰Department of Pediatrics, University of Medicine, Houston, T ## **Supplementary Note** #### Clinical data All patients in the discovery (DC) and CHOP replication (RC1) cohorts were diagnosed prior to their 19th birthday and fulfilled standard IBD diagnostic criteria. Cohort characteristics are shown in Supplementary Table 1. Family history of IBD was obtained with focus on first degree relatives. A patient was considered to be of Jewish heritage when at least 2 grandparents were known to be Jewish. Phenotypic characterization was based on a modification of the Montreal classification such that the definitions of L1 & L3 were both extended to include disease within the small bowel proximal to the terminal ileum and distal to the ligament of Treitz. Disease above the ligament of Treitz was recorded separately; perianal disease included only those patients with perianal abscess and/or fistula. "Isolated Colonic IBD" included all patients with disease limited to the colon (724 with UC, 53 with IBD-U, and 402 with Colonic CD). A sub-group of IBD patients employed in this study (1,011 patients, including 647 CD and 317 UC and 47 inflammatory bowel disease type unclassified (IBD-U)), were utilized in a previous IBD GWA analysis reporting on two novel IBD loci on chromosome 20q13 and 21q22¹; however, only novel and non-overlapping loci are being described in this manuscript (Supplementary Table 2). The control group was recruited by CHOP clinicians, nursing and medical assistant staff within the CHOP Health Care Network, which includes primary care clinics and outpatient practices. The control subjects did not have IBD or evidence of chronic disease based on self-reported intake questionnaire or clinician-based assessment. The Research Ethics Board of the respective Hospitals and other participating centers approved the study, and written informed consent was obtained from all subjects (or their legal guardians). Details of the ascertainment and characterization of the IIBDGC cohort (RC-CD2)were provided in the original scan and replication publications²⁻⁶ ### **Supplementary Results** We observed several additional loci at suggestive levels of significance ($P < 1 \times 10^{-6}$) in our discovery scans of CD, UC, and IBD. The 15q22 locus, located near the *SMAD3* gene, nominally associated with IBD in the CHOP-based replication cohort, but failed to attain genome-wide significance in the discovery + replication meta analysis (**Supplementary Table 3**). 15q22 attained suggestive level of significance (P<1 x 10^{-6}) in our combined IBD scan. SNP rs16950687 (P=6.67 x 10^{-7} , OR = 1.20 [1.12-1.29]) on 15q22 lies in an LD block containing the genes SMAD3, a TGF β activated transcriptional modulator, and IQCH, a protein thought to have a regulatory role in spermatogenesis. rs16950687 nominally replicates in replication cohort RC1 (P= 0.019, OR = 1.21 [1.03-1.41]) but fails to replicate in the IIBDGC cohort (RC2-CD). rs16950687 also shows nominal association with CD in the majority adult onset meta analysis dataset (P=0.0287, OR = 1.10) (**Supplementary Table 4**)². Our CD analysis showed an additional novel locus in a gene rich region of1q22 (**Supplementary Table 3**). rs3180018 shows suggestive association in DC-CD (P=7.76 x 10^{-7} , OR = 1.25 (1.14-1.36) but does not replicate in RC1-CD or RC2-CD. It however shows significance in the previously published majority adult-onset CD meta analysis (P=0.02, Z = 2.32) (**Supplementary Table 4**), and thus may merit further followup as a CD risk variant². Our UC analysis revealed three additional novel loci (18q12.2, 16q21, 10q25.3) demonstrating suggestive levels of significance ($P < 1 \times 10^{-6}$), however none of these successfully replicated in their respective replication cohorts (**Supplementary Table 3**). Given the small size of the RC1-UC dataset (120 UC cases, 1696 controls), further efforts to replicate the UC loci with better powered cohorts are warranted. Finally, we observed significance at early onset loci near 20q13 (near *TNFRSF6B*) and 21q22 (near *BWRD1* and *PSMG1*) previously identified in a genome wide scan of a subset of the cohort used in this study¹. Our current dataset further supported these associations: rs2315008 on 20q13 showed robust association with CD in the DC-CD, RC1-CD, RC2-CD meta analysis ($P = 3.50 \times 10^{-9}$, Z = -5.91) and genome wide significance in the combined IBD meta analysis (DC-CD + RC1-IBD, RC2-CD) ($P = 4.67 \times 10^{-11}$, Z = -6.58). rs2315008 showed less significant association in the UC-only (DC-UC, RC1-UC) meta analysis ($P = 1.05 \times 10^{-4}$, Z = -3.88). rs2836878 on 21q22 showed the most striking association with UC ($P = 2.65 \times 10^{-9}$, Z = -5.95) and nominal significance in the combined IBD meta analysis ($P = 1.21 \times 10^{-6}$, Z = -4.85). These results suggest that 20q13 may be a more CD specific locus while 21q22 is a more UC specific marker. ### **Additional Authors** #### Western Regional Alliance for Pediatric IBD Gary Silber 1, Iwona Wrobel 2, Antonio Quiros, 3 1 Department of Pediatrics, Phoenix Children's Hospital, 1919 East Thomas Road, Phoenix, AZ 85016, USA ²Department of Pediatrics, Alberta Children's Hospital, 2888 Shaganappi Trail NW, Calgary, Alberta Canada T3B 6A8 ³Department of Pediatrics, California Pacific Medical Center, 2340 Clay Street, San Francisco, CA 94120 USA #### **International IBD Genetics Consortium** Jeffrey C. Barrett¹, Sarah Hansoul², Dan L. Nicolae³, Judy H. Cho⁴, Richard H. Duerr^{5,6}, John D. Rioux^{7,8}, Steven R. Brant^{9,10}, Mark S. Silverberg¹¹, Kent D. Taylor¹², M. Michael Barmada⁵, Alain Bitton¹³, Themistocles Dassopoulos⁹, Lisa Wu Datta⁹, Todd Green⁸, Anne M. Griffiths¹⁴, Emily O. Kistner¹⁵, Michael T. Murtha⁴, Miguel D. Regueiro⁶, Jerome I. Rotter¹², L. Philip Schumm¹⁵, A. Hillary Steinhart¹¹, Stephan R. Targan¹², Ramnik J. Xavier¹⁶, the NIDDK IBD Genetics Consortium, Cécile Libioulle², Cynthia Sandor², Mark Lathrop¹⁷, Jacques Belaiche¹⁸, Olivier Dewit¹⁹, Ivo Gut¹⁷, Simon Heath¹⁷, Debby Laukens²⁰, Myriam Mni², Paul Rutgeerts²¹, André Van Gossum²², Diana Zelenika¹⁷, Denis Franchimont²², JP Hugot²³, Martine de Vos²⁰, Severine Vermeire²¹, Edouard Louis¹⁸, the Belgian-French IBD consortium, the Wellcome Trust Case Control Consortium, Lon R. Cardon¹, Carl A. Anderson¹, Hazel Drummond²⁴, Elaine Nimmo²⁴, Tariq Ahmad²⁵, Natalie J Prescott²⁶, Clive M. Onnie²⁶, Sheila A. Fisher²⁶, Jonathan Marchini²⁷, Jilur Ghori²⁸, Suzannah Bumpstead²⁸, Rhian Gwillam²⁸, Mark Tremelling²⁹, Panos Deloukas²⁸, John Mansfield³⁰, Derek Jewell³¹, Jack Satsangi²⁴, Christopher G. Mathew²⁶, Miles Parkes²⁹, Michel Georges², Mark J. Daly^{8,32} ¹Bioinformatics and Statistical Genetics, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK. ²Unit of Animal Genomics, GIGA-R and Faculty of Veterinary Medicine, University of Lie`ge, Belgium. ³University of Chicago, Department of Medicine, 5801 South Ellis, Chicago, Illinois 60637, USA. ⁴Yale University, Departments of Medicine and Genetics, Division of Gastroenterology, Inflammatory Bowel Disease (IBD) Center, 300 Cedar Street, New Haven, Connecticut 06519, USA. ⁵University of Pittsburgh, School of Medicine, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center (UPMC) Presbyterian, 200 Lothrop Street, Pittsburgh, Pennsylvania 15213, USA. ⁶University of Pittsburgh, Graduate School of Public Health, Department of Human Genetics, 130 Desoto Street, Pittsburgh, Pennsylvania 15261, USA. ⁷Universite' de Montre' al and the Montreal Heart Institute, Research Center, 5000 rue Belanger, Montreal, Quebec H1T 1C8, Canada. ⁸The Broad Institute of Massachusetts Institute of Technology and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA. ⁹Johns Hopkins University, Department of Medicine, Harvey M. and Lyn P. Meyerhoff Inflammatory Bowel Disease Center, 1503 East Jefferson Street, Baltimore, Maryland 21231, USA. ¹⁰Johns Hopkins University, Bloomberg School of Public Health, Department of Epidemiology, 615 E. ¹⁰Johns Hopkins University, Bloomberg School of Public Health, Department of Epidemiology, 615 E. Wolfe Street, Baltimore, Maryland 21205, USA. ¹¹Mount Sinai Hospital IBD Centre, University of Toronto, 441-600 University Avenue, Toronto, Ontario M5G 1X5, Canada. ¹²Medical Genetics Institute and Inflammatory Bowel Disease (IBD) Center, Cedars-Sinai Medical Center, 8700 W. Beverly Blvd., Los Angeles, California 90048, USA. - ¹³Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec, H3A 1A1, Canada. - ¹⁴The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada. 15University of Chicago, Department of Health Studies, 5841 - S. Maryland Avenue, Chicago, Illinois 60637, USA. - ¹⁶Gastrointestinal Unit and Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA. ¹⁷Centre National de Ge'notypage, Evry, France. - ¹⁸Unit of Hepatology and Gastroenterology, Department of Clinical Sciences, GIGA-R, Faculty of Medicine and CHU de Lie' ge, University of Lie'ge, Belgium. - ¹⁹Department of Gastroenterology, Clinique universitaire St Luc, UCL, Brussels, Belgium. ²⁰Department of Hepatology and Gastroenterology, Ghent University Hospital, Belgium. ²¹Department of Gastroenterology, University Hospital Leuven, Belgium. - ²²Department of Gastroenterology, Erasmus Hospital, Free University of Brussels, Belgium. ²³INSERM; Universite' Paris Diderot; Assistance Publique Hoˆpitaux de Paris; Hopital Robert Debre', Paris, France. ²⁴Gastrointestinal Unit, Division of Medical Sciences, School of - Molecular and Clinical Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK. - ²⁵Peninsula Medical School, Barrack Road, Exeter, EX2 5DW, UK. - ²⁶Department of Medical and Molecular Genetics, King's College London School of Medicine, 8th Floor Guy's Tower, Guy's Hospital, London, SE1 9RT, UK. - ²⁷Department of Statistics, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK. - ²⁸The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK. - ²⁹IBD research group, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK. ³⁰Department of - Gastroenterology and Hepatology, University of Newcastle upon Tyne, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, UK. - ³¹Gastroenterology Unit, Radcliffe Infirmary, University of Oxford, Oxford, OX2 6HE, UK. - ³²Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, Massachusetts 02114, USA. #### REFERENCES - 1. Kugathasan, S. et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. *Nat Genet* **40**, 1211-5 (2008). - 2. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. *Nat Genet* **40**, 955-62 (2008). - 3. Dixon, A.L. et al. A genome-wide association study of global gene expression. *Nat Genet* **39**, 1202-7 (2007). ### **TABLES** ### **Supplementary Table 1** Study recruitment, subsequent inclusion, and ultimate demographic and phenotypic characteristics of Caucasian (European ancestry) subjects with matched controls in the discovery cohort DC-IBD (n=2413) (a) General demographic characteristics of cohorts employed in our study cohort DC-IBD | | 18 | IBD | CD | UC | IBD-U | |--------------------------------|--|----------------|---------------|--------------|-------------------| | | Recruited | 3370 | 2304 | 993 | 73 | | Caucas | ian + meeting QC criteria | 2784 | 1887 | 835 | 62 | | Fir | nal Discovery Cohort | 2413 | 1636 | 724 | 53 | | | Male | 1273 (52.7%) | 927 (56.6%) | 321 (44.3%) | 25 (47.2%) | | D | Median Age at Diagnosis (IQR) | 12yrs (9-14.2) | 12yrs (10-14) | 12yrs (8-15) | 10.25yrs (7-13.5) | | Demographic
Characteristics | 1° Familial Hx (Valid %) ¹ | 289 (14%) | 215 (15.5%) | 63 (10.2%) | 11 (21%) | | | Known Jewish Heritage (Valid %) ² | 223 (9.6%) | 161 (10.3%) | 57 (8.1%) | 5 (9.8%) | (b) Specific disease characteristics of DC-CD and DC-UC discovery cohorts. | | CD Patient Characteristics | Transcription of the second | |---------------------|---|-----------------------------| | Disease Behaviour 6 | Fibrostenotic | 187 (15.7%) | | Disease Behaviour | Internally Penetrating | 190 (15.9%) | | | Isolated Small Bowel Disease (Valid %) | 297 (20%) | | | Isolated Colonic Disease (Valid %) | 402 (27.2%) | | Anatomic Location 3 | Small Bowel Colon Disease (Valid %) | 769 (52%) | | | Any Perianal Disease ⁵ (Valid %) | 312 (21.4%) | | UC Pa | itient Characteristics | | |--------------------|------------------------|-----------| | 6 | Extensive Disease | 394 (70%) | | Disease Behaviour° | Left-Sided Disease | 168 (30%) | (c) Ethnic origins of our discovery cohort DC-IBD. | | IBD Discovery
Cohort (DC-IBD) | |---------------|----------------------------------| | Italy | 322 | | Scotland | 374 | | Canada | 528 | | United States | 1189 | | <u>TOTAL</u> | <u>2413</u> | - 1. Family Hx details not available in 14% of cases - 2. Jewish Heritage unknown in 4% of cases - 3. 7 cases had disease isolated to the upper tract, one case had disease isolated to the perianal region. Complete disease location data unavailable in 10% of CD cases - 4. Details of disease extent unavailable in 22% of UC cases - 5. Details of perianal disease unavailable in 11% of CD cases - 6. Details of disease behaviour at latest review unavailable in 27% of CD cases # **Supplementary Table 2** Discovery cohort (DC-IBD) sizes and filtering | | Kut | hagasan e | t al ¹ | | Consortiu | n | | All | | Controls | |-------------------------|-----|-----------|-------------------|------|-----------|------|------|-----|------|----------| | 9 | CD | UC | IBD | CD | UC | IBD | CD | UC | IBD | Controls | | QC Filtered + Caucasian | 647 | 317 | 1011 | 1241 | 548 | 1677 | 1887 | 835 | 2722 | 7315 | | Final Cohort | 606 | 308 | 903 | 966 | 470 | 1510 | 1636 | 724 | 2413 | 6158 | ## **Supplementary Table 3** a) Novel genome wide significant ($P < 1 \times 10^{-7}$) and suggestive ($P < 1 \times 10^{-6}$) CD loci identified in the discovery GWA scan of early-onset CD patients (DC-CD). Since rs3180018 was not typed in the IIBDGC study (RC2-CD), we assessed association in this dataset at a nearby SNP rs1052176 (fields marked with a "*"). | Band | MB | Genes | SNP | All | | | | Discovery
1636 / 6158) | | CHOP CD replication (RC1-CD)
(n = 289 / 1696) | | | | IIBDGC replication (RC2-CD)
(n = 531 / 4109) | | | | Replication combined | | Combined | d | |---------|---------------|---------------------------------|-----------|-----|----------|------|-------|---------------------------|------|--|-------|------------------|-------|---|-------|-------------------|-------|----------------------|----------|----------|---| | | | | | | P | Aff | Unaff | OR | P | Aff | Unaff | OR | P | Aff | Unaff | OR | P | Z | P | Z | | | 16p11.2 | 28.45-28.54 | IL27, SULTIAT, SULTIA2, EIF3C | rs1968752 | A/T | 2.09E-08 | 0.39 | 0.34 | 1.25 [1.16-1.36] | 0.81 | 0.36 | 0.35 | 1.02 [0.85-1.23] | 0.036 | 0.35 | 0.33 | 1.09 [0.94-1.27] | 0.059 | 1.89 | 6.67E-08 | 5.40 | _ | | 1922 | 153.46-154.06 | C1orf2, CLK2, GBA, HCN3, SCAMP3 | rs3180018 | A/T | 7.76E-07 | 0.28 | 0.24 | 1.25 (1.14-1.36) | 0.10 | 0.28 | 0.25 | 1.17 (0.97-1.40) | 0.91* | 0.26* | 0.25* | 1.03 (0.89-1.19)* | 0.412 | 0.82 | 2.89E-05 | 4.18 | | b) Novel genome wide significant ($P < 1 \times 10^{-7}$) and suggestive ($P < 1 \times 10^{-6}$) UC loci identified in the discovery GWA scan of early-onset UC patients (DC-UC). | Band | МВ | Genes | SNP | All | | | (DC-UC)
158) | CH | IOP UC I | Total C | ombined | | | |---------|---------------|-------------------------------|------------|--------------|------|-------|------------------|--------|----------|---------|------------------|----------|-------| | | | | | P | Aff | Unaff | OR | P | Aff | Unaff | OR | P | Z | | 18q12.2 | 32.22-32.25 | FHOD3, MOCOS | rs7228236 | C/G 9.93E-08 | 0.16 | 0.22 | 0.67 [0.58-0.78] | 0.84 | 0.23 | 0.22 | 1.03 [0.76-1.41] | 3.35E-06 | -4.65 | | 2q37.3 | 241.21-241.42 | CAPN10, GPR35, KIF1A, RNPEPL1 | rs4676410 | A/T 1.70E-07 | 0.24 | 0.18 | 1.41 [1.24-1.61] | 0.06 | 0.25 | 0.20 | 1.34 [0.99-1.82] | 3.64E-08 | 5.51 | | 16q21 | 57.06-57.07 | NDRG4 | rs16960173 | A/T 5.67E-07 | 0.34 | 0.28 | 1.34 [1.20-1.51] | 0.58 | 0.28 | 0.27 | 1.09 [0.81-1.45] | 2.54E-06 | 4.70 | | 10q25.3 | 115.17-115.26 | HABP2, NRAP | rs12360212 | A/T 8.55E-07 | 0.30 | 0.24 | 1.35 [1.20-1.52] | 0.5139 | 0.21 | 0.23 | 0.90 [0.65-1.24] | 4.50E-05 | 4.08 | c) Novel genome wide significant ($P < 1 \times 10^{-7}$) and suggestive ($P < 1 \times 10^{-6}$) IBD loci identified in the combined discovery GWA scan of early onset IBD (DC-IBD). | Band | МВ | Genes | SNP | All | | | 3D Disco
= 2413 / | | CI | | 3D replie
= 482 / | ation (RC1)
1696) | IIE | | plication | on (RC2-CD)
4109) | | lication | Total C | Combined | |----------|---------------|-------------------------------|------------|-----|----------|------|----------------------|------------------|--------|------|----------------------|----------------------|--------|------|-----------|----------------------|----------|----------|----------|----------| | | | | | | P | Aff | Unaff | OR | P | Aff | Unaff | OR | P | Aff | Unaff | OR | P | Z | P | Z | | 8q24.21 | 128.25-128.28 | | rs2456449 | CIG | 1.26E-07 | 0.30 | 0.34 | 0.82 [0.77-0.89] | 0.30 | 0.32 | 0.33 | 0.92 [0.79-1.07] | 0.32 | 0.33 | 0.34 | 0.94 [0.82-1.08] | 0.16 | -1,41 | 1.02E-06 | 4.89 | | 16p11.2 | 28.74-28.81 | IL27, SULT1A1, SULT1A2, EIF3C | rs8049439 | C/G | 2.38E-07 | 0.41 | 0.37 | 1.20 [1.12-1.28] | 0.34 | 0.40 | 0.38 | 1.08 [0.93-1.24] | 0.0014 | 0.42 | 0.39 | 1.14 [1.00-1.30] | 0.0015 | 3.17 | 2.41E-09 | 5.97 | | 15q22.33 | 65.25-65.26 | SMAD3 | rs16950687 | CIG | 5.24E-07 | 0.31 | 0.27 | 1.20 [1.12-1.29] | 0.019 | 0.31 | 0.28 | 1.21 [1.03-1.41] | 0.26 | 0.27 | 0.26 | 1.06 [0.92-1.23] | 0.024 | 2.26 | 1.51E-07 | 5.25 | | 22012.2 | 29.75.29.86 | HORMANS WITHOUT US | m2412073 | AIT | 0.145.07 | 0.50 | 0.46 | 1 18 71 11-1 202 | 0.0052 | 0.61 | 0.46 | 1 22 11 06 1 420 | 0.016 | 0.50 | 0.46 | 1.15 (1.01.1.31) | 9.58E-04 | 3.67 | 1.54E-00 | 6.04 | ### **Supplementary Table 4** a) Novel genome wide significant ($P < 1 \times 10^{-7}$) and suggestive ($P < 1 \times 10^{-6}$) putative CD loci identified in the discovery GWA scan of early-onset CD patients (DC-CD) and their corresponding significance (or that of a surrogate) in the previously published majority adult-onset CD meta analysis. | Band | МВ | Genes | SNP | | | = 1636 / | 1000 - 1 000 | CD meta analysis
(n = 3230 / 4829) | | | | |---------|---------------|---------------------------------|-----------|----------|------|----------|---------------------|---------------------------------------|--------|------|--| | | | | | P | Aff | Unaff | OR | SNP | Р | Z | | | 16p11.2 | 28.45-28.81 | IL27, SULT1A1, SULT1A2, EIF3C | rs1968752 | 2.09E-08 | 0.39 | 0.34 | 1.25 [1.16-1.36] | rs4788084 | 0.0035 | 2.92 | | | 1q22 | 153.46-154.06 | C1orf2, CLK2, GBA, HCN3, SCAMP3 | rs3180018 | 7.76E-07 | 0.28 | 0.24 | 1.25 [1.14-1.36] | rs1052176 | 0.020 | 2.33 | | b) Novel genome wide significant ($P < 1 \times 10^{-7}$) and suggestive ($P < 1 \times 10^{-6}$) putative IBD loci identified in the discovery GWA scan of early-onset CD patients (DC-CD) and their corresponding significance (or that of a surrogate) in the previously published majority adult-onset CD meta analysis. | Band | МВ | Genes | SNP | | | BD Disco
= 2413 / | | CD meta analysis
(n = 3230 / 4829) | | | | | |----------|---------------|-------------------------------|------------|----------|------|----------------------|------------------|---------------------------------------|----------|------|--|--| | | | | | P | Aff | Unaff | OR | SNP | Р | Z | | | | 8q24.21 | 128.25-128.28 | | rs2456449 | 1.26E-07 | 0.30 | 0.34 | 0.82 [0.77-0.89] | rs2456449 | 2.33E-01 | 1.19 | | | | 16p11.2 | 28.45-28.81 | IL27, SULT1A1, SULT1A2, EIF3C | rs8049439 | 2.38E-07 | 0.41 | 0.37 | 1.20 [1.12-1.28] | rs8049439 | 4.96E-03 | 2.81 | | | | 15q22.33 | 65.25-65.26 | SMAD3 | rs16950687 | 5.24E-07 | 0.31 | 0.27 | 1.20 [1.12-1.29] | rs16950687 | 2.87E-02 | 2.19 | | | | 22q12.2 | 28.75-28.86 | HORMAD2, MTMR3, LIF | rs2412973 | 9.14E-07 | 0.50 | 0.46 | 1.18 [1.11-1.26] | rs2412973 | 9.53E-04 | 3.30 | | | **Supplementary Table 5** 49 previously identified known and putative adult-onset IBD loci examined by our study evaluated in a meta analysis of our discovery (DC-CD, DC-UC, DC-IBD) and replication (RC1, RC1-CD, RC1-UC) cohorts. This analysis did not include the IIBDGC dataset (RC2-CD) which was a subset of the original majority-adult onset dataset which identified some of these loci. Filled circles in the first four columns of the table specify whether the given row represents a known CD locus (CDk), putative / nominal CD locus (CDp), known UC locus (UCk), and / or putative / nominal UC locus (UCp), respectively. We validate 23 of 32 known adult-onset CD loci, 8 of 17 known adult-onset UC loci, and overall 29 of 41 known and 5 of 10 putative adult-onset IBD loci in our early onset CD, UC, and IBD datasets. Loci demonstrating Bonferronni-corrected *P*<0.05 are denoted in bold (corrected for 49 hypotheses). Our data also implicate several previously described CD loci as having association with UC (bold italics). We also verify 2 nominally associating SNPs from the recent CD meta analysis (bold italics). | Dk | CDp | UCk | UCp | Band | МВ | Genes | SNP | 1000 | -CD, RC1-CD)
925 / 7854) | | -UC, RC1-UC)
844 / 7854) | | DC-IBD, RC1)
2895 / 7854) | |----|-------------|-----|----------|----------|------------------------|--------------------------------------|------------|----------|-----------------------------|----------|-----------------------------|----------|------------------------------| | | | | | | | | | P | z | Р | z | Р | z | | | | | | 1p13.2 | 114.18 | PTPN22 | rs2476801 | 2.14E-06 | -4.74 | 4.92E-01 | 0.69 | 1.86E-04 | -3.74 | | | | | | 1p31.3 | 67.48 | IL23R | rs11465804 | 1.67E-15 | -7.96 | 2.92E-03 | -2.98 | 1.03E-15 | -8.02 | | | | | | 1p36.13 | 20.04 | PLA2G2E, OTUD3 | rs6426833 | 4.17E-01 | 0.81 | 2.19E-06 | -4.73 | 4.69E-02 | -1.99 | | | | | | 1q21.2 | 148.75 | | rs13294 | 7.67E-01 | 0.30 | 2.48E-02 | 2.24 | 1.79E-01 | 1.34 | | | | | | 1q23.3 | 159.12 | OR10J1 | rs2274910 | 1.27E-01 | -1.53 | 3.58E-01 | -0.92 | 1.23E-01 | -1.54 | | | | | | 1q24.3 | 171.13 | FMO4 | rs9286879 | 4.19E-06 | 4.60 | 9.46E-01 | 0.07 | 4.65E-04 | 3.50 | | | | | | 1q32.1 | 199.25 | | rs12122721 | 3.47E-01 | -0.94 | 1.91E-01 | -1.31 | 8.03E-02 | -1.75 | | | | | | 1q32.1 | 205.01 | IL10, IL19, IL20 | rs3024505 | 4.84E-04 | 3.49 | 6.20E-04 | 3.42 | 6.84E-06 | 4.50 | | | | | | 2p16.1 | 61.04 | AHSA2, CCDC139, PEX13, USP34 , PUS10 | rs13003464 | 4.30E-03 | 2.86 | 5.51E-02 | 1.92 | 1.20E-03 | 3.24 | | | | | | 2p23.3 | 27.59 | GCKR | rs780094 | 1.45E-01 | 1.46 | 2.78E-03 | 2.99 | 3.60E-03 | 2.91 | | | 5000 | | | 2912.1 | 102.44 | IL18R1, IL18RAP, | rs917997 | 6.84E-05 | 3.98 | 1.67E-01 | 1.38 | 5.98E-05 | 4.01 | | | | | | 2q35 | 218.77 | Multiple | rs6752254 | 4.29E-01 | -0.79 | 3.53E-03 | -2.92 | 3.23E-02 | -2.14 | | | | | | 2q37.1 | 233.85 | DGKD | rs2241880 | 1.09E-18 | -8.83 | 7.58E-01 | -0.31 | 9.46E-14 | -7.45 | | | | | | 3p12.1 | 85.84 | CADM2 | rs7611991 | 9,90E-01 | 0.01 | 1.22E-02 | -2,51 | 1.13E-01 | -1.58 | | | | | | 3p21.31 | 49.70 | MST1 | rs3197999 | 6.57E-10 | 6.18 | 4.31E-04 | 3.52 | 2.41E-11 | 6.68 | | | | | | 5p13.1 | 40.43 | PTGER4 | rs4613763 | 8.98E-05 | 3.92 | 3.52E-01 | 0.93 | 1.02E-04 | 3.89 | | | | | | 5q13.3 | 76.18 | F2RL1, S100Z | rs7724915 | 3.93E-01 | -0.85 | 6.65E-02 | 1.84 | 8.52E-01 | 0.19 | | | | | | 5q31.1 | 131.80 | Multiple | rs2188962 | 3.55E-08 | 5.51 | 6.29E-01 | 0.48 | 3.28E-06 | 4.65 | | | | | | 5q33.1 | 150.25 | ZNF300 | rs7714584 | 3.37E-04 | 3.59 | 7.26E-02 | 1.80 | 1.66E-04 | 3.77 | | | | | | 5q33.3 | 158.75 | IL12B, RNF145, UBLCP1 | rs10045431 | 2.63E-06 | -4.70 | 4.14E-07 | -5.06 | 4.38E-11 | -6.59 | | | | | | 6p21.32 | 32.54 | BTNL2, SLC26A3, HLA-DRB1, HLA-DQA1 | rs2395185 | 1.91E-01 | -1.31 | 7.40E-19 | -8.87 | 7.70E-09 | -5.77 | | | | | | 6p21.32 | 32.69 | HLA-DRA | rs660895 | 1.05E-02 | -2.56 | 4.76E-15 | -7.83 | 7.29E-10 | -6.16 | | | | | | 6p22.3 | 20.84 | CDKAL1 | rs6908425 | 1.00E-02 | -2.57 | 3.81E-02 | -2.07 | 6.93E-03 | -2.70 | | | | | | 6p25.1 | 5.10 | LYRM4 | rs12529198 | 3.72E-01 | 0.89 | 8.36E-01 | -0.21 | 5.00E-01 | 0.68 | | | 7.5 | | | 6p25.2 | 3.38 | C6orf85 | rs4959832 | 2.06E-01 | -1.26 | 4.26E-01 | -0.80 | 3.37E-01 | -0.96 | | | | | | 6q21 | 106.58 | | rs6938089 | 9.49E-02 | 1.67 | 9.96E-01 | 0.00 | 1.57E-01 | 1.42 | | | 998 | | | 6q25.1 | 149.62 | | rs7758080 | 3.25E-01 | 0.99 | 6.27E-01 | 0.49 | 2.89E-01 | 1.06 | | | | | | 6q27 | 167.36 | CCR6, FGFR1OP, GPR31, RNASET2 | rs2301436 | 2.61E-03 | 3.01 | 7.05E-01 | 0.38 | 1.77E-02 | 2.37 | | | | | | 7p12.2 | 50.24 | ZPBP | rs1458893 | 9.04E-06 | -4.44 | 5.82E-01 | -0.55 | 4.33E-04 | -3.52 | | | | | | 8q24.13 | 126.61 | | rs1551398 | 6.55E-07 | -4.97 | 6.15E-01 | -0.50 | 9.21E-05 | -3.91 | | | | | | 9p24.1 | 4.97 | INSL6. JAK2 | rs10758669 | 6.44E-06 | 4.51 | 6.56E-03 | 2.72 | 5.11E-07 | 5.02 | | | | | | 9q32 | 116.60 | SLC46A2 | rs6478108 | 6.73E-09 | -5.80 | 2.88E-03 | -2.98 | 5.06E-10 | -6.22 | | | | | | 10p11.21 | Mark Street | CCNY, CREM, CUL2 | rs4934724 | 1.73E-05 | 4.30 | 1.45E-01 | 1.46 | 4.34E-06 | 4.59 | | | | - | | 10q21.2 | 64.07 | ZNF365 | rs10995250 | 1.77E-07 | 5.22 | 4.12E-02 | 2.04 | 4.50E-07 | 5.05 | | | | - | - Coling | 10q24.2 | 101.28 | NKX2-3 | rs11190140 | 2.40E-09 | -5.97 | 1.78E-04 | -3.75 | 2.74E-11 | -6.66 | | | | - | | 11913.5 | 75.95 | C11orf30 | rs7130588 | 5.45E-04 | 3.46 | 1.14E-01 | 1.58 | 2.88E-04 | 3.63 | | | | | | 12q12 | 38.67 | LRRK2, SLC2A13 | rs11174631 | 1.39E-05 | 4.35 | 6.25E-01 | -0.49 | 1.05E-03 | 3.28 | | | | | | 12g15 | 66.79 | IL26. IL22. IFNG | rs1558744 | 6.71E-03 | 2.71 | 9.69E-04 | 3.30 | 2.10E-04 | 3.71 | | | | | | 13q14.11 | NAME OF TAXABLE PARTY. | C13orf31, CCDC122, ENOX1 | rs3764147 | 2.11E-07 | 5.19 | 3.32E-01 | 0.97 | 1.83E-05 | 4.29 | | | | | | 15q13.1 | 26.20 | HERC2, OCA2 | rs1667394 | 5.96E-01 | -0.53 | 2.55E-01 | 1.14 | 7.57E-01 | 0.31 | | | | | | 16q12.1 | 49.30 | CYLD, NKD1, NOD2, SLIC1 | rs2066843 | 3.96E-26 | 10.57 | 5.55E-01 | 0.59 | 3.55E-18 | 8.69 | | | | | | 17q12 | 29.61 | CCL11, CCL2, CCL7 | rs991804 | 2.31E-04 | -3.68 | 2.78E-02 | -2.20 | 6.64E-05 | -3.99 | | | | | | 17q12 | 35.29 | ORMDL3 | rs2872507 | 3.65E-04 | 3.56 | 7.62E-04 | 3.37 | 3.13E-06 | 4.66 | | | | | | 17q21.2 | 37.77 | STAT3 | rs744166 | 9.33E-03 | -2.60 | 1.34E-01 | -1.50 | 4.19E-03 | -2.86 | | | | ÷ | 5'9'0 | 18p11.21 | 100000 | PTPN2 | rs1893217 | 4.32E-03 | 2.85 | 2.48E-01 | 1.15 | 3.34E-03 | 2.94 | | , | | | | 18q11.2 | 17.93 | | rs8098673 | 8.15E-02 | 1.74 | 1.58E-01 | 1.41 | 4.33E-02 | 2.02 | | | , (C. T. C. | | | 19p13.3 | 1.08 | SBNO2 | rs2024092 | 3.04E-02 | 2.17 | 1.25E-03 | 3.23 | 7.04E-04 | 3.39 | | : | | | | 21g21.1 | 15.74 | - Proceedings | rs1736148 | 7.59E-06 | -4.48 | 5.76E-01 | -0.56 | 1.01E-05 | -4.41 | | • | | | | 21q21.1 | 44.44 | ICOSLG1 | rs762421 | 3.32E-07 | 5.10 | 2.54E-05 | 4.21 | 3.19E-10 | 6.29 | #### **FIGURES** **Supplementary Figure 1. LCL eQTL analysis of rs1968752.** Comparison of the A/A genotype and C/C genotype for rs1968752 in lymphoblastoid cell lines showed no allelespecific gene expression changes for (A) *EIF3C*, (B) *CCDC101*, (C) *CLN3*, three genes located near *IL-27* in the 16p11 locus, associated with Crohn's disease in our study. We did not assess allele specific gene expression of the two other genes in the LD block (*NUPR1* and *SULT1A1*), however these did not show allele-specific changes in gene expression in a publicly available database³. Error bars represent s.e.m. **Supplementary Figure 2.** Colonic expression of 16p11 genes in CD, UC, and normal patients. The LD block on 16p11 harboring rs1968752 and rs8049439 associates with early onset CD and IBD in our analyses. We examined the expression of genes *IL27*, *CCDC101*, *CLN3*, *EIF3C*, *NUPR1*, *SULT1A1*, and *SULT1A2* between 11 normal, 30 early-onset CD, 10 early-onset UC samples, using one-way analysis of variance with Tukey-Kramer multiple-comparison correction and significance thresholds of P<0.05, P<0.001, and P<0.0001. Data for *IL27*, *SULT1A1*, and *SULT1A2* are shown in **Figure 2** and **Figure 3** of the main body of the manuscript. We did not observe significant colonic gene differences in CD vs normal for (a) *EIF3C*, (b) *CLN3*, (c) *NUPR1*, and (d) *CCDC101*, however *CLN3* showed a significant effect in UC vs normal (P<0.05). Error bars represent s.e.m. **Supplementary Figure 3.** Colonic expression of 22q12 and 2q37 candidate genes in **CD, UC, and normal patients.** We examined colonic gene expression differences for (a) *HORMAD2* (22q12), (b) *LIF* (22q12) (c) *GPR35* (2q37) (d) *KIF1A* (2q37) (e) *RNPEPL1* (2q37). Error bars represent s.e.m.